Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
1.
J Food Sci Technol ; 61(6): 1188-1200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38562592

RESUMO

A lab-scale continuous ohmic heating (COH) system was developed, and its performance was studied for pineapple juice heating as a model sample. The effect of independent parameters [°Brix/Acid (unstandardized, 18, 22, 26) and flow rate (80-120 mL/min) of juice and electric field strength (EFS: 25-45 V/cm)] were analysed for responses viz. come-up-time, heating rate (HR) and system performance coefficient (SPC). The full factorial experimental design was used for this study. The results showed that with an increase in °Brix/Acid, the % acidity and electrical conductivity decreased significantly (p < 0.05); thus, the come-up-time to reach 90 °C increased significantly. The HR was significantly (p < 0.05) influenced by °Brix/Acid and EFS but less so by flow rates at higher EFS. The SPC was more than 0.90 and reduced significantly (p < 0.05) with an increase in °Brix/Acid and flow rate. The HR was modeled using a feed-forward back-propagation artificial neural network (ANN) with the best topology of 3, 5, and 1 neurons in the input (independent), hidden, and output (response) layers, respectively. The model performed efficiently, which is evident from the high R2 (0.998) and low RMSE (1.255). Thus, the COH, with its high efficiency and HR, can effectively be used to process fruit juice. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-024-05961-x.

2.
Polymers (Basel) ; 16(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38611260

RESUMO

New composites made of natural fiber polymers such as wasted date palm surface fiber (DPSF) and pineapple leaf fibers (PALFs) are developed in an attempt to lower the environmental impact worldwide and, at the same time, produce eco-friendly insulation materials. Composite samples of different compositions are obtained using wood adhesive as a binder. Seven samples are prepared: two for the loose natural polymers of PALF and DPSF, two for the composites bound by single materials of PALF and DPSF using wood adhesive as a binder, and three composites of both materials and the binder with different compositions. Sound absorption coefficients (SACs) are obtained for bound and hybrid composite samples for a wide range of frequencies. Flexural moment tests are determined for these composites. A thermogravimetric analysis test (TGA) and the moisture content are obtained for the natural polymers and composites. The results show that the average range of thermal conductivity coefficient is 0.042-0.06 W/(m K), 0.052-0.075 W/(m K), and 0.054-0.07 W/(m K) for the loose fiber polymers, bound composites, and hybrid composites, respectively. The bound composites of DPSF have a very good sound absorption coefficient (>0.5) for almost all frequencies greater than 300 Hz, followed by the hybrid composite ones for frequencies greater than 1000 Hz (SAC > 0.5). The loose fiber polymers of PALF are thermally stable up to 218 °C. Most bound and hybrid composites have a good flexure modulus (6.47-64.16 MPa) and flexure stress (0.43-1.67 Mpa). The loose fiber polymers and bound and hybrid composites have a low moisture content below 4%. These characteristics of the newly developed sustainable and biodegradable fiber polymers and their composites are considered promising thermal insulation and sound absorption materials in replacing synthetic and petrochemical insulation materials in buildings and other engineering applications.

3.
Food Chem X ; 22: 101254, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38444559

RESUMO

In this study, a new fermented food was developed using pineapple by-products and whey protein (2.6%) as raw materials through the co-fermentation of autochthonous lactic acid bacteria and yeast. To better understand the fermentation mechanism and the impact of microorganisms on the entire fermentation system, we tracked the changes in carbohydrate and amino acid profiles, organoleptic quality and microbial community during the fermentation process. Compared with unfermented samples, dietary fiber and free amino acids increased significantly as fermentation proceeded. The fermented samples were significantly lower in astringency and bitterness and significantly higher in sourness, umami and richness. The fermented products were richer in volatile compounds with floral, cheesy, fruity and other flavors. Relevant analyses showed that the core microbial community was highly correlated with the quality attributes of the fermented products. Microorganisms such as Lactococcus, Weissella, Hanseniaspora, Saccharomyces and Lachancea contributed significantly to the fermented products.

4.
Heliyon ; 10(4): e26698, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434067

RESUMO

Pineapple leaves can provide competitive and high-quality fibers for textile purposes. Despite pineapple being cultivated in the Portugues islands there is still a technology gap for the extraction and treatment of Pineapple Leaf Fibers (PALF) in Europe. Since Azorean Pineapple differs significantly from other plants in the bromeliad family, the properties and characterization of its leaf fibers were explored for the first time. Long fibers have been extracted by hand scraping and compared to biological retting at 25 °C for different time periods. It was explored the properties of PALF from plants of different ages (11- and 18-months) and from different zones of the leaves (beginning, middle, and tip). Physical-mechanical properties of Azores PALF were determined, including diameter, linear density, strength, Young's modulus, and elongation at break and characterized by ATR-FTIR, XRD, TGA/DTG, and FESEM to understand their chemical and morphological characteristics. While slight differences were observed between different ages, variations in physical-mechanical properties were notable among fibers extracted from different leaf positions. Extraction of Azores PALF through 25 °C biological retting for 14 days effectively eliminated non-fibrous matter and produced the thinnest and strongest fibers. These fibers ranged between 34.9 and 168.3 µm in diameter, 1.39 and 7.07 tex in linear mass density, 37-993 MPa in tensile strength, 1.0-3.9 % in elongation at break, and 2.4-21.8 GPa in Young's modulus.

5.
Environ Sci Pollut Res Int ; 31(16): 24113-24128, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436853

RESUMO

The presence of organic dyes in aquatic systems poses a significant threat to ecosystems and human well-being. Due to recycling challenges, traditional commercial activated carbon is not cost-effective. To address this, an imidazolate acid zeolite framework-8 (ZIF-8)-modified magnetic adsorbent (ZMPLB-800) was synthesized through the in-situ formation of ZIF-8 and subsequent carbonization at 800 °C, using magnetic pineapple leaf biochar (MPLB) as a carrier. The porous structure of ZMPLB-800 facilitates the rapid passage of dye molecules, enhancing adsorption performance. ZMPLB-800 exhibited remarkable adsorption capacity for methylene blue (MB) across a pH range of 3-13, with a maximum adsorption capacity of 455.98 mg g-1. Adsorption kinetics and thermodynamics followed the pseudo-second-order kinetic model and Langmuir isotherm model. Mechanisms of MB adsorption included pore filling, hydrogen bonding, electrostatic interactions, π-π interactions, and complexation through surface functional groups. Additionally, ZMPLB-800 demonstrated excellent regeneration performance, recording a removal efficiency exceeding 87% even after five adsorption/desorption cycles. This study provides a novel strategy for treating dye wastewater with MOF composites, laying the foundation for waste biomass utilization.


Assuntos
Ananas , Poluentes Químicos da Água , Zeolitas , Adsorção , Carvão Vegetal/química , Ecossistema , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Azul de Metileno/química , Folhas de Planta , Águas Residuárias , Poluentes Químicos da Água/química
6.
Children (Basel) ; 11(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38539412

RESUMO

Bromelain is a complex natural mixture of sulfhydryl-containing proteolytic enzymes that can be extracted from the stem or fruit of the pineapple. This compound is considered a safe nutraceutical, has been used to treat various health problems, and is also popular as a health-promoting dietary supplement. There is continued interest in bromelain due to its remarkable therapeutic properties. The mechanism of action of bromelain appears to extend beyond its proteolytic activity as a digestive enzyme, encompassing a range of effects (mucolytic, anti-inflammatory, anticoagulant, and antiedematous effects). Little is known about the clinical use of bromelain in pediatrics, as most of the available data come from in vitro and animal studies, as well as a few RCTs in adults. This narrative review was aimed at highlighting the main aspects of the use of bromelain in children, which still appears to be limited compared to its potential. Relevant articles were identified through searches in MEDLINE, PubMed, and EMBASE. There is no conclusive evidence to support the use of bromelain in children, but the limited literature data suggest that its addition to standard therapy may be beneficial in treating conditions such as upper respiratory tract infections, specific dental conditions, and burns. Further studies, including RCTs in pediatric settings, are needed to better elucidate the mechanism of action and properties of bromelain in various therapeutic areas.

7.
Biomolecules ; 14(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38540779

RESUMO

Pineapple weed (Matricaria discoidea DC.) is a widespread plant in Europe and North America. In ethnomedicine, it is well-known for its anti-inflammatory and spasmolytic activities. The aim of this research was to develop novel methods of M. discoidea processing to obtain essential oil and dry extracts and to investigate their phytochemical compositions. Moreover, the molecular docking of the main substances and the in vivo studies on their soporific and analgesic activities were conducted. The essential oil and two dry extracts from M. discoidea were prepared. A total of 16 phenolic compounds (seven flavonoids, seven hydroxycinnamic acids, and two phenolic acids) in the dry extracts were identified by means of UPLC-MS/MS. In the essential oil, nine main terpenoids were identified by gas chromatography (GC). It was shown that phenolic extraction from the herb was successful when using 70% ethanol in a triple extraction method and at a ratio of 1:14-1:16. The in vivo studies with rodents demonstrated the analgesic activity of the M. discoidea extracts and improvements in the sleep of animals. The dry extracts of M. discoidea did not show any toxicity. The molecular docking analysis showed a high probability of COX-1,2 inhibition and NMDA receptor antagonism by the extracts.


Assuntos
Matricaria , Óleos Voláteis , Animais , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Analgésicos/farmacologia , Analgésicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Óleos Voláteis/farmacologia , Etanol , Fenóis/farmacologia , Antioxidantes/química
8.
Ultrason Sonochem ; 105: 106857, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552299

RESUMO

This work investigated the effects of the combined use of thermosonication-preconditioned lactic acid bacteria (LAB) with the addition of ultrasound-assisted pineapple peel extracts (UU group) on the post-acidification potential, physicochemical and functional qualities of yogurt products, aimed at achieving prolonged preservation and enhancing functional attributes. Accordingly, the physical-chemical features, adhesion properties, and sensory profiles, acidification kinetics, the contents of major organic acids, and antioxidant activities of the differentially processed yogurts during refrigeration were characterized. Following a 14-day chilled storage process, UU group exhibited acidity levels of 0.5-2 oT lower than the control group and a higher lactose content of 0.07 mg/ml as well as unmodified adhesion potential, indicating that the proposed combination method efficiently inhibited post-acidification and delayed lactose metabolism without leading to significant impairment of the probiotic properties. The results of physicochemical analysis showed no significant changes in viscosity, hardness, and color of yogurt. Furthermore, the total phenolic content of UU-treated samples was 98 µg/mL, 1.78 times higher than that of the control, corresponding with the significantly lower IC50 values of DPPH and ABTS radical scavenging activities of the UU group than those of the control group. Observations by fluorescence inverted microscopy demonstrated the obvious adhesion phenomenon with no significant difference found among differentially prepared yogurts. The results of targeted metabolomics indicated the proposed combination strategy significantly modified the microbial metabolism, leading to the delayed utilization of lactose and the inhibited conversion into glucose during post-fermentation, as well as the decreased lactic acid production and a notable shift towards the formation of relatively weak acids such as succinic acid and citric acid. This study confirmed the feasibility of thermosonication-preconditioned LAB inocula, in combination with the use of natural active components from fruit processing byproducts, to alleviate post-acidification in yogurt and to enhance its antioxidant activities as well as simultaneously maintaining sensory features.


Assuntos
Ananas , Antioxidantes , Fermentação , Extratos Vegetais , Iogurte , Iogurte/microbiologia , Iogurte/análise , Ananas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Sonicação , Temperatura , Concentração de Íons de Hidrogênio , Manipulação de Alimentos/métodos , Qualidade dos Alimentos
9.
Chem Biodivers ; : e202400315, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38484117

RESUMO

Pineapple (Ananas comosus), the succulent and vibrant tropical fruit, is a symbol of exoticism and sweetness that captures the hearts and palates of people around the world. The pineapple peel, often considered as waste, has garnered attention for its potential applications. The pineapple peel is rich in essential nutrients, including calcium, potassium, vitamin C, carbohydrates, dietary fiber, and water, making it beneficial for the digestive system, weight management, and overall balanced nutrition. It contains significant amounts of sugars such as sucrose, glucose, and fructose, along with citric acid as the predominant organic acid. The peel also contains bromelain, a proteolytic enzyme known for its digestive properties. Studies have highlighted the pharmacological properties of pineapple peel, such as its potential anti-parasitic effects, alleviation of constipation, and benefits for individuals with irritable bowel syndrome (IBS). Efforts are being made to promote the utilization of pineapple peel as a valuable resource rather than mere waste. Its applications range from the production of vinegar, alcohol, and citric acid to the development of various food products, including squash, syrup, jelly, and pickles. Further research and innovation are required to fully explore the potential of pineapple peel and establish sustainable practices for its utilization, contributing to waste reduction and the development of value-added products.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38536485

RESUMO

A considerable amount of fruit waste is being produced every day worldwide. The green synthesis of metal nanoparticles from fruit peel waste can be an innovative, cost-effective, and eco-friendly alternative to traditional methods. Copper nanoparticles (CuNPs) were synthesized by a green method using the pineapple peels extract (PLX) and copper sulfate pentahydrate. The formation of CuNPs was visually identified and detected by UV-Visible spectroscopy. The CuNPs were characterized by Fourier-transform infrared (FTIR) spectroscopy, particle size analyzer, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The antioxidant and reducing power of CuNPs were conducted by %DPPH scavenging and electron transfer-based ferric reducing antioxidant power (FRAP) assay, respectively. The antibacterial properties of CuNPs were determined in gram-positive, and gram-negative bacteria. The results showed that the CuNPs were spherical in shape with mean particle size 290.5 nm. The zeta potential of the nanoparticles was found to be - 12.3 mV indicating the instability in the colloidal state. The FTIR study confirmed the peaks of phytochemicals present in the PLX and the nanoparticles supporting the use of pineapple peels as stabilizing, reducing and capping agents. Both the DPPH and reducing power assay depicted that the synthesized CuNPs had significant antioxidant activity. However, the synthesized CuNPs had strong inhibitory capacity against both gram-positive and gram-negative test organisms. Thus, the CuNPS could be used for its viable antibacterial potential to preserve fruits, flowers, and vegetables from bacterial contamination.

11.
Bioresour Technol ; 398: 130526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437967

RESUMO

Globally, the demands for sustainably sourced functional foods like prebiotic oligosaccharides have been constantly increasing. This study assessed the potential of pineapple leaves (PL) as lignocellulosic feedstock for sustainable production of cellulose and hemicellulose-derived oligosaccharides through its hydrothermal pretreatment (HT) followed by controlled enzymatic hydrolysis. PL was subjected to HT at 160, 175, and 190 °C for 20, 30, 60, and 90 min without any catalyst for xylooligosaccharide (XOS) production, whereas, the resulting solid content after HT was subjected to controlled enzymatic hydrolysis by commercial cellulase using conduritol B epoxide (0.5-5 mM) for glucooligosaccharides (GOS) production. HT at 160 °C for 60 min resulted in maximum yield of XOS and GOS at 23.7 and 18.3 %, respectively, in the liquid phase. Controlled enzymatic hydrolysis of HT treated (160 °C) PL solids for 20 and 30 min yielded âˆ¼ 174 mg cellobiose/g dry biomass within 24 h, indicating overall high oligosaccharide production.


Assuntos
Ananas , Celulose , Polissacarídeos , Hidrólise , Oligossacarídeos , Glucuronatos
12.
Int J Biol Macromol ; 262(Pt 2): 130221, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365159

RESUMO

The present study involves the isolation of cellulose nanofibers from pineapple crown waste by a combined alkali-acid treatment method. The extracted pineapple nanofibers were characterized by Fourier-transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, nuclear magnetic resonance, high-resolution transmission electron microscopy, and dynamic light scattering. The extracted pineapple nanofibers were then incorporated in Carbopol 934P containing ketoconazole to prepare a ketoconazole-loaded pineapple nanofibrous gel. The prepared gel formulation was evaluated for viscosity, spreadability, extrudibility, pH, drug content, and texture profile analysis. The anticipated gel formulation was further evaluated by in vitro drug release (98.57 ± 0.58 %), ex vivo drug permeation, cytotoxicity, and histopathological studies. The permeation of the drug through skin determined by the ex-vivo diffusion study was found to be 38.27 % with a flux rate of 4.06 ± 0.26 µg/cm2/h. Further, the cytotoxicity study of pineapple nanofiber and ketoconazole-loaded nanofiber gel displayed no cytotoxic on healthy vero cells in the concentration range from 10 to 80 µg/ml. The histopathological analysis exhibited no signs of distress and inflammation. In conclusion, ketoconazole-loaded pineapple nanofiber gel could be considered as a promising delivery system for topical applications.


Assuntos
Ananas , Nanofibras , Animais , Chlorocebus aethiops , Cetoconazol/farmacologia , Nanofibras/química , Células Vero , Celulose
13.
Heliyon ; 10(3): e25432, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322872

RESUMO

In this study, the focus was to produce xanthan gum from pineapple waste using Xanthomonas campestris. Six machine learning models were employed to optimize fermentation time and key metabolic stimulants (KH2PO4 and NH4NO3). The production of xanthan gum was optimized using two evolutionary optimization algorithms, particle swarm optimization, and genetic algorithm while the importance of input features was ranked using global sensitivity analysis. KH2PO4 was the most important input and was found to be beneficial for xanthan gum production, while a limited amount of nitrogen was needed. The extreme learning machine model was the most adequate for modeling xanthan gum production, predicting a maximum xanthan yield of 10.34 g/l (an 11.9 % increase over the control) at a fermentation time of 3 days, KH2PO4 of 15 g/l, and NH4NO3 of 2 g/l. This study has provided important insights into the intelligent modeling of a biostimulated process for valorizing pineapple waste.

14.
J Food Sci Technol ; 61(3): 551-562, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327857

RESUMO

Huge amount of waste is generated by the pineapple processing industries which raises concerns regarding its safe disposal into the environment. This ever-increasing problem of waste management can be solved by the valorization of pineapple by-products to high-value compounds. The extraction of proteolytic enzyme, bromelain from pineapple rind using green techniques can help to overcome the drawbacks associated with conventional methods. In the present study, the extraction of bromelain from pineapple rind using microwave assisted technique resulted in considerable amount of proteolytic activity (127.8 U/mL) and protein content (2.55 mg/mL). The optimized extraction conditions were found as 200 W microwave power, 1:5 solid/ liquid ratio and after treatment time of 10 min. Highest specific activity (512 U/mg) of bromelain was obtained after using gel filtration chromatography. FTIR result confirmed the presence of functional groups in bromelain, whereas, XRD analysis indicated the semi-crystalline nature of bromelain. The results indicated MAE as an effective green technique for the extraction of bromelain from pineapple rind. The proteolytic action of the extracted bromelain makes it a suitable functional ingredient for its applications in bakery, dairy, and seafood processing industries.

15.
Foods ; 13(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38397568

RESUMO

Pineapple by-products are good sources of bromelain, a complex enzyme with commercial applications. This study evaluated the feasibility of producing bromelain powders from pineapple waste using an organic solvent-free approach. Pineapple by-products (from var. MD2), including cores, peels, crowns, stems, and basal stems, were homogenized with deionized water, and the pH of the mixture was adjusted to 4.5 and 9 (isoelectric points of fruit bromelain and stem bromelain), clarified, ultra-filtered, and freeze-dried to produce bromelain powders. The enzymatic activity of the bromelain powders was measured using the gelatin and casein digestion methods. The bromelain powders from the crowns did not show significant enzymatic activity (p < 0.05). Meanwhile, bromelain powders produced from the cores and peels had an enzymatic activity of 694 gelatin digesting units (GDU)/g and 124 casein digesting units (CDU)/mg, and 1179 GDU/g and 217 CDU/mg, respectively. Bromelain powders from the basal stems showed the highest enzymatic activity (2909 GDU/g and 717 CDU/mg). Increasing the pH of the liquid mixture before the purification and freeze drying significantly (p < 0.05) reduced the enzymatic activity of the bromelain powders. Using a practical and organic solvent-free approach, this study demonstrates the feasibility of producing bromelain powders with high enzymatic activity from pineapple waste.

16.
Insects ; 15(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38249030

RESUMO

Pineapple mealybug, Dysmicoccus brevipes (Hemiptera: Pseudococcidae), is a significant pest in pineapple production and a key trade barrier. We explored the potential use of ethyl formate (EF) as a methyl bromide alternative for the postharvest fumigation of D. brevipes in imported pineapples. When treated at 8 °C for 4 h, EF fumigation was effective against D. brevipes with LCt99, the lethal concentration × time product of EF necessary to achieve 99% mortality of D. brevipes nymphs and adults at 64.2 and 134.8 g h/m3, respectively. Sorption trials conducted with 70 g/m3 EF for 4 h at 8 °C using 7.5, 15 and 30% pineapple loading ratios (w/v) indicated that loading ratio lower than 30% is necessary to achieve the LCt99 values required to control D. brevipes. In a scaled up trial using 1 m3 chamber, EF fumigation with 70 g/m3 for 4 h at 8 °C with 20% pineapple loading ratio (w/v) resulted in a complete control of D. brevipes treated. There were no significant differences in hue values, sugar contents, firmness, and weight loss between EF-treated and untreated pineapples. Our results suggest that EF is a promising alternative to methyl bromide fumigation for the postharvest phytosanitary disinfection of D. brevipes in pineapples.

17.
Plant Dis ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254324

RESUMO

In June 2017, severe leaf spots symptoms were observed by growers on pineapple leaves of Josapine variety in in Alor Pongsu (5°01'60.00" N, 100°34' 59.99" E), Perak, northwest of Peninsular Malaysia. The early infection stage shows that several brown spots could be observed, which then would merge to form large brown to creamy white lesions that cover all the leaf surface. This infection finally caused the plant to die after a while. Disease observations conducted from 2018 - 2023 showed that 10-15% incidences of the disease were observed in several pineapple farms located in Johor, Kedah, and Sarawak. The aim of this study to confirm the causal pathogen of the disease by performing isolation, pathogenicity testing, and identification of the primary causal pathogen from 20 samples of infected leaves collected from Alor Pongsu. The leaf tissues between infected and healthy were cut into small pieces (0.5 cm 0.5 cm), and surface sterilized with 1% sodium hypochlorite for 30 seconds, followed by 70% ethanol for 30 seconds, and rinsed thrice with sterilized water before placing on Potato Dextrose Agar (PDA). The PDA plates were incubated at room temperature (28 ± 2℃) in natural light. After five days of incubation, the potential causal pathogen was purified using a single conidial isolation technique for morphological and molecular characterizations. All 32 isolates displayed similar phenotypes. Based on morphological observation on PDA, the colonies were initially white of aerial mycelia but gradually darkened as the culture aged. Microscopic features of the 14-day-old fungal culture showed that the mycelia were branched with 0- 1 septa, pigmented, and brown. Arthroconidia were ellipsoid to ovoid or round shaped, hyaline, with rounded apex, truncate base, and occurring singly or in chains averaging 9 ± 3 × 5 ± 2 µm (n = 20).  Based on the morphological characteristics, the fungal isolates were tentatively identified as Neoscytalidium species. A representative isolate of Neoscytalidium coded as UiTMPMD2 was further identified through PCR implication of the internal transcribed spacer (ITS) region using ITS1 and ITS4 primers and BLAST homology search as Neoscytalidium dimidiatum (Penz.) Crous & Slippers based on 100% similarity (575 bp out of 575 bp) to a reference sequence (accession no. KU204558.1). The sequence was deposited in Gen Bank (accession no. OR366479) with reference sequence code of INBio:30A. Pathogenicity tests were performed on 10 whole plants of Josapine pineapple (4 months old) using a leaf inoculating method (Wu et al. 2022) in a glasshouse (25-32°C) and repeated twice. Four mature leaves per each plant were wounded at two points and inoculated with mycelium PDA plugs from 7-days-old cultures of N. dimidiatum. Control plants were wounded in the same manner but inoculated with sterilized PDA plugs. Seven days post inoculation, leaf spot symptoms were observed on treated plants with the pathogen, while the control plants remained symptomless. Pathogen was successfully reisolated from brown leaf spot symptoms in which the cultural and morphological characteristics were identical to those of the originals. Neoscytalidium dimidiatum has a wide range of hosts and it has been reported in Malaysia to cause stem canker on pitahaya (Mohd et al. 2003; Khoo et al. 2023 ) and fruit rot of guava (Ismail et al. 2021). To the best of our knowledge this is the first report of N. dimidiatum causing leaf spots on pineapples in Malaysia. This report establishes a foundation for further study of N. dimidiatum that can effectively address the disease in pineapple.

18.
Polymers (Basel) ; 16(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257009

RESUMO

The effects of palm oil (PO) and coconut oil (CO) additions on the physicochemical properties and in vitro starch digestibility of extruded pineapple stem starch (PSS) were studied. The native PSS was adjusted to 15% moisture and blended with PO or CO in amounts of 5 and 10% (w/w of starch), while the control sample without added oil was adjusted to 25% moisture before being extruded with a twin-screw extruder at a maximum barrel temperature of 140 °C. Due to the lubricating effect, the added oils reduced the expansion ratio of the extrudates, which led to an increase in cell wall thickness, bulk density, hardness, and water adsorption index, but to a reduction in the water solubility index, especially with 10% oils. PO had a greater impact on the physicochemical changes in the extrudates than CO. Surprisingly, no amylose-lipid complex was observed in the extrudates with added oil, as shown by XRD, DSC, and FTIR results. The phenolic compounds contained in PSS remained in all extrudates, which could affect the formation of the amylose-lipid complex during extrusion. The addition of 5% oil had no effect on the digestibility of the starch compared to the control extrudates, while the 10% oils, both PO and CO, reduced the rapidly digestible starch content but significantly increased the resistant starch content of the extruded PSS.

19.
Polymers (Basel) ; 16(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38257031

RESUMO

Poly(lactic acid) (PLA), derived from renewable resources, plays a significant role in the global biodegradable plastic market. However, its widespread adoption faces challenges, including high brittleness, hydrophobicity, limited biodegradability, and higher costs compared to traditional petroleum-based plastics. This study addresses these challenges by incorporating thermoplastic pineapple stem starch (TPSS) and modified natural rubber (MNR) into PLA blends. TPSS, derived from pineapple stem waste, is employed to enhance hydrophilicity, biodegradability, and reduce costs. While the addition of TPSS (10 to 40 wt.%) marginally lowered mechanical properties due to poor interfacial interaction with PLA, the inclusion of MNR (1 to 10 wt.%) in the PLA/20TPSS blend significantly improved stretchability and impact strength, resulting in suitable modulus (1.3 to 1.7 GPa) and mechanical strength (32 to 52 MPa) for diverse applications. The presence of 7 wt.% MNR increased impact strength by 90% compared to neat PLA. The ternary blend exhibited a heterogeneous morphology with enhanced interfacial adhesion, confirmed by microfibrils and a rough texture on the fracture surface. Additionally, a downward shift in PLA's glass transition temperature (Tg) by 5-6 °C indicated improved compatibility between components. Remarkably, the PLA ternary blends demonstrated superior water resistance and proper biodegradability compared to binary blends. These findings highlight the potential of bio-based plastics, such as PLA blends with TPSS and MNR, to contribute to sustainable economic models and reduce environmental impact for using in plastic packaging applications.

20.
Arch Pharm (Weinheim) ; 357(1): e2300422, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37861276

RESUMO

Pineapple has been recognized for its potential to enhance health and well-being. This study aimed to gain molecular insights into the anti-inflammatory properties of fermented pineapple juice using multimodal computational studies. In this study, pineapple juice was fermented using Lactobacillus paracasei, and the solution underwent liquid chromatography-mass spectrometry analysis. Network pharmacology was applied to investigate compound interactions and targets. In silico methods assessed compound bioactivities. Protein-protein interactions, network topology, and enrichment analysis identified key compounds. Molecular docking explored compound-receptor interactions in inflammation regulation. Molecular dynamics simulations were conducted to confirm the stability of interactions between the identified crucial compounds and their respective receptors. The study revealed several compounds including short-chain fatty acids, peptides, dihydroxyeicosatrienoic acids, and glycerides that exhibited promising anti-inflammatory properties. Leucyl-leucyl-norleucine and Leu-Leu-Tyr exhibited robust and stable interactions with mitogen-activated protein kinase 14 and IκB kinase ß, respectively, indicating their potential as promising therapeutic agents for inflammation modulation. This proposition is grounded in the pivotal involvement of these two proteins in inflammatory signaling pathways. These findings provide valuable insights into the anti-inflammatory potential of these compounds, serving as a foundation for further experimental validation and exploration. Future studies can build upon these results to advance the development of these compounds as effective anti-inflammatory agents.


Assuntos
Ananas , Ananas/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Anti-Inflamatórios/farmacologia , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...